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Abstract: In this paper, a new numerical integration method on a uniform mesh is presented for the solution of
singularly perturbed two-point boundary value problems having boundary layer at one end (left or right) point. The
methods of Exact and Trapezoidal rule of integration with finite difference approximation of first derivatives are
used to obtain a three-term recurrence relationship . The obtained tridiagonal system of equations is then solved
using Thomas algorithm. Also, the stability and convergence of the proposed scheme are established. Several
model example problems are solved using the proposed method. The results are presented in terms of maximum
absolute errors which demonstrate the accuracy and efficiency of the method. It is observed that the proposed
method is capable of producing highly accurate results with minimal computational effort for a fixed value of step
size h, when perturbation parameter tends to zero.
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1 Introduction
Any differential equation in which highest order
derivative is multiplied by a small positive parame-
ter ε greater than zero is called a singular perturba-
tion problem. A singular perturbation problem is well
defined as one in which no single asymptotic expan-
sion is uniformly valid throughout the interval, as the
perturbation parameter ε → 0. Singular perturbation
problems have very frequent use in fluid mechanics,
fluid dynamics, elasticity, aerodynamics, plasma dy-
namics, magneto hydrodynamics, rarefied gas dynam-
ics, oceanography and other domains of fluid motion.
Important examples include boundary layer problems,
WKB problems, the modeling of steady and unsteady
viscous flow problems with large Reynolds numbers
[21, 16], convective heat transport problems with
large Peclet numbers, magneto-hydrodynamics duct
problems at high Hartman numbers[5], etc. The so-
lutions of these type of equations possess layer be-
haviour; that is, there exist some thin regions in the
domain of the differential equation where the solu-
tion shows rapid change in behaviour. Because of
this layer behaviour, existing standard numerical tech-
niques fails to give uniformly convergent solutions to
these problems. Thus more efficient and computation-
ally easy methods are needed to solve singularly per-
turbed boundary value problems.

The survey articles [7, 13, 15] are a great source
of information on singular perturbation problems.

A good number of high level monographs/books
are available on the singular perturbation problems.
Some of these are : O Malley [19, 20], Nayfeh [18],
Kevorkian and Cole [14], Angel and Bellman [1],
Bender and Orszag [2], El’sgol’ts and Norkin [4] and
Hemker and Miller [6], Miller [17].

In this paper, a simple and efficient numerical in-
tegration method is proposed for solving a class of sin-
gularly perturbed two-point boundary value problems.
Novelty of this method lies in the fact that it does nei-
ther depend on deviating argument [8] nor any asymp-
totic expansion [24] or fitted mesh [10, 23, 11].

The paper is organized as follows: Section-2,
presents the description of the proposed new method
to solve a class of a second order singularly per-
turbed two-point boundary value problem. Section-
3 presents the description of the Thomas algorithm
for solving obtained tridiagonal system. The stability
of the proposed method is discussed in the Section-
4. In the Section-5, the convergence of the proposed
method is analyzed. To demonstrate the accuracy and
efficiency of the proposed method, Numerical experi-
ments are carried out for several model test problems
and the results are presented in terms of maximum ab-
solute error in tables in Section-6. Finally, the discus-
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sions and conclusions are presented in the last section-
7. The paper ends with the references.

2 Statement of the problem
To describe the method proposed, consider a class of
singular perturbation problems of the form:

εy′′(x)+[a(x)y(x)]′−b(x)y(x) = f(x); 0 ≤ x ≤ 1
(1)

with
y(0) = α and y(1) = β (2)

where ε is a small positive parameter (0 < ε << 1);
α, β are given constants; a(x), b(x), and f(x) are
assumed to be sufficiently continuously differentiable
functions in [0,1]. Considering a(x) ≥M > 0 on the
whole of the interval [0,1], where M is some positive
constant, the boundary layer will exist in the neigh-
bourhood of x = 0, while it will be present in the
neighbourhood of x = 1, if a(x) ≤ M < 0 through-
out the interval [0,1], where M is negative constant.

2.1 Description of the method

2.1.1 Left end layer problem
First, we divide the interval [0,1] into N equal parts
with uniform mesh length h. Let 0 = x0 < x1 <
x2 < ... < xN = 1 be the mesh points where xi =
x0 + ih, i = 0, 1, 2, ..., N.
Integrating the Eq. (1) in [xi, xi+1] (i = 1, 2, ..., N −
1.) , we get

[
εy′(x)

]xi+1

xi
+ [a(x)y(x)]xi+1

xi
−

xi+1∫
xi

b (x) y (x)dx

=

xi+1∫
xi

f (x)dx

Or, ε y′i+1 − ε y′i + ai+1yi+1 − aiyi

−
xi+1∫
xi

b (x)y (x) dx =

xi+1∫
xi

f (x) dx

Now on applying trapezoidal rule of integration, we
have

ε y′i+1 − ε y′i + ai+1yi+1 − aiyi

− h

2
[bi+1yi+1 + biyi ] =

h

2
[fi+1 + fi ]

Or, ε y′i+1 − ε y′i +

[
ai+1 −

h

2
bi+1

]
yi+1

+

[
− ai −

h

2
bi

]
yi =

h

2
[fi+1 + fi ] (3)

Using the following approximations for first deriva-
tive of y,

y′i+1 =
yi+1 − yi

h
(4)

and

y′i =
yi − yi−1

h
(5)

into Eq. (3) we get

ε

[
yi+1 − yi

h

]
− ε

[
yi − yi−1

h

]
+ [ai+1−

h

2
bi+1

]
yi+1 +

[
− ai −

h

2
bi

]
yi =

h

2
[fi+1 + fi ]

Or,
ε

h
yi−1 −

[
2ε

h
+ ai +

h

2
bi

]
yi +

[ ε
h

+

ai+1 −
h

2
bi+1

]
yi+1 =

h

2
[fi + fi+1] (6)

The Eq. (6) can be written as the three term recur-
rence relation of form:

Eiyi−1−Fiyi+Giyi+1 = Ri; i = 1, 2, ..., N−1 (7)

where
Ei =

ε

h

Fi =
2ε

h
+ ai +

h

2
bi

Gi =
ε

h
+ ai+1 −

h

2
bi+1

Ri =
h

2
[fi + fi+1]

This tridiagonal system is solved by using Thomas al-
gorithm. Which is described in the section-3.

2.1.2 Right end layer problem
As described the method for left end layer problem
above, we first divide the interval [0,1] into N equal
parts with uniform mesh length h. Let 0 = x0 <
x1 < x2 < ... < xN = 1 be the mesh points where
xi = x0 + ih, i = 0, 1, 2, ..., N.
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Integrating the Eq. (1) in [xi−1, xi] (i = 1, 2, ..., N −
1.), we get

[
εy′(x)

]xi
xi−1

+ [a(x)y(x)]xixi−1
−

xi∫
xi−1

b (x) y (x)dx

=

xi∫
xi−1

f (x)dx

Or, ε y′i − ε y′i−1 + aiyi − ai−1yi−1

−
xi∫

xi−1

b (x)y (x) dx =

xi∫
xi−1

f (x) dx

Now on applying trapezoidal rule of integration, we
have

ε y′i − ε y′i−1 + aiyi − ai−1yi−1

− h

2
[biyi + bi−1yi−1 ] =

h

2
[fi + fi−1 ]

Or, ε y′i − ε y′i−1 +

[
ai −

h

2
bi

]
yi

+

[
− ai−1 −

h

2
bi−1

]
yi−1 =

h

2
[fi + fi−1 ]

(8)

Using the following approximations for first deriva-
tive of y,

y′i−1 =
yi − yi−1

h
(9)

and
y′i =

yi+1 − yi
h

(10)

into Eq. (8) we get

ε

[
yi+1 − yi

h

]
− ε

[
yi − yi−1

h

]
+

[
ai −

h

2
bi

] yi +

[
− ai−1 −

h

2
bi−1

]
yi−1 =

h

2
[fi + fi−1 ]

Or,
[
ε

h
− ai−1 −

h

2
bi−1

]
yi−1 −

[
2ε

h
− ai +

h

2
bi

]
yi +

[ ε
h

]
yi+1 =

h

2
[fi + fi−1]

(11)

The Eq. (11) can be written as the three term recur-
rence relation of form:

Eiyi−1 − Fiyi +Giyi+1 = Ri; i = 1, 2, ..., N − 1
(12)

where
Ei =

ε

h
− ai−1 −

h

2
bi−1

Fi =
2ε

h
− ai +

h

2
bi

Gi =
ε

h

Ri =
h

2
[fi + fi−1]

This tridiagonal system is solved by using Thomas al-
gorithm. Which is described in the section-3.

3 Thomas Algorithm

We briefly discuss the Thomas algorithm to solve the
tridiagonal system [3]:-

Eiyi−1 − Fiyi +Giyi+1 = Ri; i = 1, 2, ..., N − 1
(13)

subject to the boundary conditions

y0 = y(0) = α, yN = y(1) = β (14)

First, we set

yi = Wiyi+1 + Ti for i = N − 1, N − 2, ..., 2, 1
(15)

where Wi = W (xi) and Ti = T (xi), which are to be
determined. From Eq. (15), we have

yi−1 = Wi−1yi + Ti−1 (16)

Substituting Eq. (16) in Eq. (13), we have

Ei (Wi−1yi + Ti−1)− Fiyi +Giyi+1 = Ri

yi (EiWi−1 − Fi) +Giyi+1 = Ri − EiTi−1
yi (Fi − EiWi−1) = (EiTi−1 −Ri) +Giyi+1

yi =
Gi

Fi − EiWi−1
yi+1 +

EiTi−1 −Ri
Fi − EiWi−1

(17)

By comparing Eqs. (15) and (17), we get the recur-
rence relations

Wi =
Gi

Fi − EiWi−1
(18)

Ti =
EiTi−1 −Ri
Fi − EiWi−1

(19)

T0 solve these recurrence relations for i =
0, 1, 2, ..., N − 1, we need to know the initial condi-
tions for W0 and T0. This can be done by considering
(14):-

y0 = α = W0y1 + T0

If we choose W0 = 0 then we set T0 = α.
Using these initial values, we compute Wi and Ti for
i = 0, 1, 2, ..., N−1 from Eqs. (18) and (19) in the yi
in the backward process from the Eqs. (15) and (14).
Now, we will show that the method is computationally
stable.
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4 Stability

By stability we mean that the effect of an error made in
one stage of calculation is not propagated into larger
errors at latter stages of computation. In other words,
local errors are not magnified by further computation
[9, 12].

Let us now examine the recurrence relation given
by Eq. (13). Suppose a small error τi, has been made
in the calculation of Wi, then we have

W̃i = Wi + τi (20)

and we are actually calculating

W̃i =
Gi

Fi − EiW̃i−1
(21)

From Eqs. (18)and (21), we have

τi = W̃i − Wi

=
Gi

Fi − EiW̃i−1
− Gi
Fi − EiWi−1

=
Gi

Fi − Ei (Wi−1 + τi−1)
− Gi
Fi − EiWi−1

= EiGiτi−1 [Fi − Ei (Wi−1 + τi−1)]
−1 [Fi−

EiWi−1]
−1

=
Eiτi−1
Gi

[
Gi

Fi − Ei (Wi−1 + τi−1)

]
[

Gi
Fi − EiWi−1

]
= W 2

i

Ei
Gi
τi−1 (22)

under the assumption that the error is small initially.

Then from the definition of Ei, Fi and Gi from
(7) with the assumption that Ei > 0 and Gi > 0 for
i = 1, 2, ..., N − 1. and it can be shown that |Fi| >
|Ei+Gi|; provided |ai+h

2 bi| > |ai+1−h
2 bi+1|; ∀ i =

1, 2, ..., N − 1.
From the initial condition on W0, it is clear that
|W0| < 1, We now make use of the assumptions on
Ei and Gi to show |Wi| < 1 for i = 0, 1, 2, ..., N − 1.
from Eq. (18)

W1 =
G1

F1
< 1 (Since F1 > G1)

W2 =
G2

F2 − E2W1
<

G2

F2 − E2
(Since W1 < 1)

<
G2

E2 +G2 − E2
= 1 (Since F2 ≥ E2 + G2)

Successively it follows that |Wi| < 1 for i =
0, 1, 2, ..., N − 1.
Then it follows from the Eq. (22) that

|τi| = |W 2
i

Ei
Gi
τi−1|

= |Wi|2|
Ei
Gi
||τi−1|

< |τi−1|; provided |Gi| ≥ |Ei|, (23)

and thus the recurrence relation (18) is stable.
Similarly suppose a small error τ̃i has been made in
the calculation of Ti, then we have

T̃i = Ti + τi

similar argument give

τ̃i = Wi
Gi
Ei
τ̃i−1

Making use of the condition Wi < 1 for i =
0, 1, 2, ..., N − 1; it follows that

|τ̃i| = |Wi||
Gi
Ei
||τ̃i−1|

< |τ̃i−1|

and thus the recurrence relations (18) and (19) are sta-
ble. Hence, we conclude that the discrete imvarient
imbedding algorithm is computationally stable. Fi-
nally, the convergence of this discrete invariant imbed-
ding method is ensured by the condition |Wi| < 1 for
i = 0, 1, 2, ..., N − 1.

5 Convergence Analysis

Writing the tri-diagonal system (13) in matrix-vector
form, we obtain

AY = C (24)

whereA = (mi,j) , 1 ≤ i, j ≤ N −1 is a tri-diagonal
matrix of order N-1, with

mi,i+1 = −ε − hai+1 +
h2

2
bi+1

= coefficient of yi+1 in (6); i = 1(1)N − 2

mi,i = 2ε + hai +
h2

2
bi

= coefficient of yi in (6); i = 1(1)N − 1

mi,i−1 = −ε
= coefficient of yi−1 in (6); i = 2(1)N − 1

WSEAS TRANSACTIONS on MATHEMATICS Rakesh Ranjan, H. S. Prasad

E-ISSN: 2224-2880 268 Volume 17, 2018



and C = (di) is a column vector with di =

−h2

2 [fi + fi+1], where i = 1, 2, ..., N − 1 with lo-
cal truncation error

τi (h) = h2
[(

a′′i
2
− b′i

2

)
yi +

(
a′i −

bi
2

)
y′i +

ai
2
y′′i −

f ′i
2

]
+ o

(
h3
)

(25)

We also have
AY − τ(h) = C (26)

where Y =
(
Y 0, Y 1, Y 2, ..., Y N

)t and τ(h) =

(τ1(h), τ2(h), ..., τN (h))t denote the actual solution
and the local truncation error respectively.
From Eqs. (24) and (26), we have

A
(
Y − Y

)
= τ(h) (27)

Thus, the error equation is

AE = τ(h) (28)

where E = Y − Y = (e0, e1, e2, ..., eN )t .
Let Si be the sum of elements of the ith row of A, then
we have

S1 =
N−1∑
j=1

m1,j = ε+ h(a1 − a2) +
h2

2
(b1 + b2)

SN−1 =

N−1∑
j=1

mN−1,j = ε+ haN−1 +
h2

2
bN−1

Si =
N−1∑
j=1

m1,j = h [ai − ai+1] +
h2

2
[bi + bi+1]

= hBi; i = 2 (1)N − 2.

where Bi = [a1 − ai+1] + h
2 [bi + bi+1]

Since 0 < ε << 1, the matrix A is irreducible and
monotone. Then, it follows that A−1 exists and its
elements are non-negative. Hence, from Eq.(28) we
have

E = A−1τ(h) (29)

‖E‖ ≤ ‖A−1‖‖τ(h)‖ (30)

Let m̄k,i be the (k, i)th element of A−1. Since m̄k,i ≥
0, from the operations of matrices we have,

N−1∑
i=1

m̄k,iSi = 1; k = 1, 2, ..., N − 1 (31)

Therefore, it follows that

N−1∑
i=1

m̄k,i ≤
1

min
0≤i≤N−1

Si
=

1

hBi0
≤ 1

h|Bi0 |
(32)

for some i0 between 1 and N-1.
We define ‖A−1‖ = max

0≤k≤N−1

∑N−1
i=1 |m̄k,i| and

‖τ(h)‖ = max
0≤k≤N−1

|τ(h)|.
Therefore, from Eqs. (25),(29) and (31) we obtain

ej =
N−1∑
i=1

m̄k,iτi(h); j = 1(1)N − 1

and therefore

|ej | ≤
kh2

h|Bi0 |
; j = 1(1)N − 1 (33)

where k =
[(

a′′i
2 −

b′i
2

)
|yi|+

(
a′i −

bi
2

)
|y′i|+

ai
2 |y
′′
i | −

f ′i
2

]
is constant independent of h.
Therefore, using the definitions and Eq.(33)

‖E‖ = o(h)

This implies that our method is first order convergence
on uniform mesh.
As above, we can apply the same procedure for show-
ing the method is of first order convergence on uni-
form mesh for right layer problem.

6 Numerical examples

6.1 Numerical examples: left-end boundary
layer problems

In this subsection, we have applied the proposed
method on four linear singular perturbation problems
and presented the computational results in the tables
in terms of the maximum absolute errors. These
examples have been chosen because they have been
widely discussed in literature.

Example 1:- Consider the following non-
homogeneous SPP from fluid dynamics for fluid of
small viscosity, [22, Example 2]

εy′′ (x) + y′ (x) = 1 + 2x; for 0 ≤ x ≤ 1

with y (0) = 0 and y (1) = 1

The exact solution is given by

y(x) = x(x+ 1− 2ε) + (2ε− 1)
(1− exp(−x/ε))
(1− exp(−1/ε))
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Table 1: The Maximum absolute error for the
Example-1 for different values of N and singular per-
turbation parameter ε.

ε N=16 N=32 N=64 N=128 256

10−2 1.332803E-01 1.945177E-01 1.770201E-01 1.034513E-01 6.082416E-02
10−3 1.571649E-02 3.094596E-02 6.002969E-02 1.128439E-01 1.833405E-01
10−4 1.597345E-03 3.189027E-03 6.357253E-03 1.263452E-02 2.495885E-02
10−5 1.598597E-04 3.201365E-04 6.384850E-04 1.279414E-03 2.551436E-03
10−6 1.591444E-05 3.230572E-05 6.490906E-05 1.255870E-04 2.585649E-04
10−7 1.668930E-06 3.059442E-06 5.304813E-06 1.424551E-05 2.050400E-05
10−8 2.980232E-07 7.599592E-07 1.370907E-06 2.777204E-06 5.662441E-06
10−9 0.000000E+00 4.172325E-07 1.456589E-06 1.192093E-07 2.384186E-07
10−10 0.000000E+00 0.000000E+00 0.000000E+00 1.164153E-10 1.164153E-10
10−11 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
10−15 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
10−20 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

It can be easily observed from the Table 1 that the
maximum absolute error for the example problem-1
is becoming zero, when singular perturbation param-
eter ε → 0, for any fixed value of N = 1

h . Further,
for smaller values of N the tendency of maximum ab-
solute error to converge to zero is fast with respect to
larger values of N .

The maximum absolute errors for different values of
N and singular perturbation parameter ε are presented
in Table 1.

Example 2:- Consider the following homoge-
neous SPP from Kevorkian and Cole [14, p. 33, Eqs.
(2.3.26) and (2.3.27)] with α = 0 :

εy′′ (x) + y′ (x) = 0; for 0 ≤ x ≤ 1

with y (0) = 0 and y (1) = 1

The exact solution is given by

y(x) =
1− exp(−x/ε)
1− exp(−1/ε)

The maximum absolute errors for different values of
N and singular perturbation parameter ε are presented
in Table 2.

Example 3:- Consider the following SPP with
variable coefficients from Kevorkian and Cole [14, p.
33, Eqs. (2.3.26) and (2.3.27)] with α = −1/2 :

εy′′ (x) +
(

1− x

2

)
y′ (x)− 1

2
y (x) = 0; for 0 ≤ x ≤ 1

with y (0) = 0 and y (1) = 1

First we rewrite above equation in the form of main
equation, i.e., as

εy′′(x) +
[
(1− x

2
)y(x)

]′
= 0

We have chosen to use uniformly valid approximation
(which is obtained by the method given by Nayfeh

Table 2: The Maximum absolute error for the
Example-2 for different values of N and singular per-
turbation parameter ε.

ε N=16 N=32 N=64 N=128 256

10−2 1.360003E-01 1.984887E-01 1.806326E-01 1.055667E-01 6.207365E-02
10−3 1.574641E-02 3.100961E-02 6.015033E-02 1.130707E-01 1.837178E-01
10−4 1.597524E-03 3.186345E-03 6.359279E-03 1.263821E-02 2.497596E-02
10−5 1.599193E-04 3.218055E-04 6.321669E-04 1.285970E-03 2.553523E-03
10−6 1.597404E-05 3.385544E-05 6.401539E-05 1.128316E-04 2.711415E-04
10−7 2.503395E-06 3.218651E-06 7.390979E-06 2.038479E-05 3.027916E-05
10−8 1.072884E-06 3.576279E-06 4.410744E-06 1.502037E-05 1.776218E-05
10−9 0.000000E+00 1.907349E-06 7.380976E-06 1.192093E-07 2.384186E-07
10−10 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
10−11 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
10−15 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
10−20 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

As like Table-1 for example problem-1, one can eas-
ily observed from the Table 2 that the maximum ab-
solute error for the example problem-2 is becoming
zero, when singular perturbation parameter ε → 0,
for any fixed value of N = 1

h . Further, for smaller
values of N the tendency of maximum absolute error
to converge to zero is fast with respect to larger values
of N .

[18, p. 148, Eq. (4.2.32)]) as our exact solution,

y(x) =
1

2− x
− 1

2
exp

(
−
(
x− x

4

)2
/ε

)
The maximum absolute errors for different values of
N and singular perturbation parameter ε are presented
in Table 3.

Example 4:- Consider the following singular per-
turbation problem:

εy′′ (x) + y′ (x) = 2; for 0 ≤ x ≤ 1

with y (0) = 0 and y (1) = 1

The exact solution is given by

y(x) = 2x+
(1− exp(−x/ε))
(exp(−1/ε)− 1)

The maximum absolute errors for different values of
N and singular perturbation parameter ε are presented
in Table 4.

6.2 Numerical examples: right-end bound-
ary layer problems

In this subsection, we have applied the proposed
method on two model linear singular perturbation
problems having boundary layer at the right-end. The
computational results are presented in terms of the
maximum absolute errors in tables. These examples
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Table 3: The Maximum absolute error for the
Example-3 for different values of N and singular per-
turbation parameter ε.

ε N=16 N=32 N=64 N=128 256

10−2 3.362869E-01 3.774481E-01 4.179145E-01 4.369655E-01 4.468246E-01
10−3 4.811954E-02 2.736307E-01 4.062337E-01 4.300662E-01 4.629640E-01
10−4 7.537007E-04 5.097389E-04 1.235052E-01 3.484314E-01 4.464494E-01
10−5 7.575750E-05 1.541972E-04 3.157854E-04 1.550600E-02 2.106749E-01
10−6 7.987022E-06 1.579523E-05 2.950430E-05 6.616116E-05 3.427267E-05
10−7 8.344650E-07 1.251698E-06 4.768372E-06 4.231930E-06 1.829863E-05
10−8 3.576279E-07 1.072884E-06 1.907349E-06 3.039837E-06 1.847744E-06
10−9 4.768372E-07 7.152557E-07 1.192093E-07 7.152557E-07 7.569790E-06
10−10 5.960464E-08 1.788139E-07 2.384186E-07 4.072884E-07 6.198883E-07
10−11 5.960464E-08 1.192093E-07 1.192093E-07 3.576279E-07 5.364418E-07
10−15 5.960464E-08 1.192093E-07 1.192093E-07 3.576279E-07 2.980232E-07
10−20 5.960464E-08 1.192093E-07 1.192093E-07 3.576279E-07 2.980232E-07

It can be easily observed from the Table-3 that the
maximum absolute errors tends to zero, when singular
perturbation parameter ε → 0, for any fixed value of
N = 1

h . Further, for smaller values of N the tendency
of maximum absolute error to become uniform is fast
with respect to larger values of N .

have been chosen because they have been widely dis-
cussed in literature.

Example 5:- Consider the following singular per-
turbation problem:

εy′′ (x) − y′ (x) = 0; for 0 ≤ x ≤ 1

with y (0) = 1 and y (1) = 0

Clearly, this problem has a boundary layer at x = 1
i.e., at the right end of the underlying interval.
The exact solution is given by

y(x) =
(e(x−1)/ε − 1)

(e−1/ε − 1)

The maximum absolute errors for different values of
N and singular perturbation parameter ε are presented
in Table 5.

Example 6:- Consider the following singular per-
turbation problem:

εy′′(x)− y′(x)− (1 + ε)y(x) = 0; for 0 ≤ x ≤ 1

with

y(0) = 1 + exp(−(1 + ε)/ε) and y(1) = 1 + 1/e

Clearly, this problem has a boundary layer at x = 1
i.e., at the right end of the underlying interval. The
exact solution is given by

y(x) = e(1+ε)(x−1)/ε + e−x

The maximum absolute errors for different values of
N and singular perturbation parameter ε are presented
in Table 6.

Table 4: The Maximum absolute error for the
Example-4 for different values of N and singular per-
turbation parameter ε.

ε N=16 N=32 N=64 N=128 256

10−2 1.360005E-01 1.984872E-01 1.806326E-01 1.055616E-01 6.206429E-02
10−3 1.574832E-02 3.100765E-02 6.015033E-02 1.130707E-02 1.837056E-01
10−4 1.597524E-03 3.190279E-03 6.359279E-03 1.263821E-02 2.496111E-02
10−5 1.599193E-04 3.199577E-04 6.399751E-04 1.278341E-03 2.553582E-03
10−6 1.597404E-05 3.194809E-05 6.407499E-05 1.283288E-04 2.558827E-04
10−7 1.549721E-06 3.278255E-06 6.794930E-06 1.281500E-05 2.598763E-05
10−8 2.607703E-07 1.065433E-06 1.212582E-06 3.932044E-06 5.027744E-06
10−9 0.000000E+00 5.774200E-07 2.022833E-06 1.192093E-07 2.384186E-07
10−10 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
10−11 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
10−15 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
10−20 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

As like Table-1 and 2 for example problem-1 and 2,
one can easily observed from the Table-4 that the max-
imum absolute error for the example problem-4 is be-
coming zero, when singular perturbation parameter
ε → 0, for any fixed value of N = 1

h . Further, for
smaller values of N the tendency of maximum abso-
lute error to converge to zero are fast with respect to
larger values of N .

7 Conclusion

In this paper, we have proposed a new method of
numerical integration for a class of singularly per-
turbed two-point boundary value problems. Using
the methods of Exact and Trapezoidal rule of inte-
gration with finite difference approximation of first
derivatives, a three-term recurrence relationship is ob-
tained. Thomas algorithm is used to solve the system.
Also, the stability and convergence of the proposed
scheme is established. The applicability of the pro-
posed method is demonstrated by performing numer-
ical experiments on six model problems (four linear
problems with left-end boundary layer and two prob-
lems with right-end boundary layer) by taking differ-
ent values of N = 1

h and perturbation parameter ε.
The computational results are presented in Tables 1-6.
It is easily observed from the tables that the presented
method is capable of producing highly accurate results
for fixed value of step size h = 1/N , when perturba-
tion parameter ε tends to zero. Further, for smaller
values of N the tendency of maximum absolute error
to converge to zero is fast with respect to larger values
of N . The maximum absolute errors are becoming ei-
ther zero or uniform for any fixed values of N when
ε → 0. Novelty of the method lies in the fact that
it does neither depend on deviating argument nor any
asymptotic expansion or fitted mesh.
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Table 5: The Maximum absolute error for the
Example-5 for different values of N and singular per-
turbation parameter ε.

ε N=16 N=32 N=64 N=128 256

10−2 1.360003E-01 1.984891E-01 1.806325E-01 1.055671E-01 6.206626E-02
10−3 1.574701E-02 3.100961E-02 6.015027E-02 1.130705E-02 1.837207E-01
10−4 1.597524E-03 3.187954E-03 6.359279E-03 1.263821E-02 2.497619E-02
10−5 1.599193E-04 3.218065E-04 6.357431E-04 1.285970E-03 2.553523E-03
10−6 1.597404E-05 3.385544E-05 6.401539E-05 1.203418E-04 2.717415E-04
10−7 2.503395E-06 3.218651E-06 3.695488E-06 2.038479E-05 1.513958E-05
10−8 1.072884E-06 3.337860E-06 4.410744E-06 1.382828E-05 1.776218E-05
10−9 0.000000E+00 1.907349E-06 7.390976E-06 1.192093E-07 2.384186E-07
10−10 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
10−11 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
10−15 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
10−20 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

As like Table-1,2 and 4 for left layer model exam-
ple problem-1,2 and 4, we can easily observe from
the Table-5 that the maximum absolute error for the
model example problem-5 is tending to zero, when
singular perturbation parameter ε → 0, for any fixed
value of N = 1

h . Further, for smaller values of N the
tendency of maximum absolute error to converge to
zero is fast with respect to larger values of N .
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